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In this theoretical and computational study of the flow of a liquid layer, under the 
influence of surface tension and gravity most notably, the nonlinear equations 
governing an interaction between viscous effects and the effects of surface tension, 
gravity and streamline curvature for the limit of large Reynolds numbers are 
derived. The aim is to make a comparison between the predictions of this theory and 
the experiments of Craik et al. on the axisymmetric hydraulic jump. Such a jump is 
commonly encountered in the everyday context of the initial filling of a kitchen sink, 
for example, and it is found in the present work that initially all the effects listed 
above can play a primary role in practice in the local jump phenomenon. As a first 
step here, the flow of the layer over a small obstacle is considered. It is seen that as 
surface tension becomes increasingly significant the upstream influence becomes 
more wave-like. Second, calculations and analysis of the nonlinear free interaction 
are presented and show wave-like behaviour upstream, followed downstream by a 
depth profile not unlike that in the typical hydraulic jump. The effects of gravity 
dominate those of surface tension downstream. Finally, comparisons are made with 
the experiments and show fair quantitative agreement, supporting the present 
proposition that these hydraulic jumps are caused by boundary-layer separation due 
to a viscous-inviscid interaction forced by downstream boundary conditions on, in 
this case, a fully developed, high-Froude-number liquid layer. 

1. Introduction 
Experiments performed by Craik et al. (1981) study the axisymmetric hydraulic 

jump formed when a column of liquid falls vertically onto a flat surface and spreads 
horizontally, just as from a tap into a kitchen sink. Similar experiments have been 
performed by Larras (1962), Clarke (1970) and Watson (1964). In this paper we make 
a comparison between the experiments of Craik et al. and the present theory which 
is based on the proposal that the jump is, at its start, a relatively abrupt 
phenomenon described by a nonlinear interaction between the effects of viscosity and 
the inviscid mechanisms of surface tension, cross-stream pressure gradients induced 
by streamline curvature, and gravity. This interaction is the source of a non- 
uniqueness or upstream influence in the solution of the governing equations and the 
jump itself is the final form of a free interaction solution which branches from the 
upstream undisturbed flow solution, adjusting the flow in readiness for downstream 
conditions. We presume this flow to be laminar and fully developed and that the 
Froude number of the flow is large, in line with the typical experimental conditions 
above and with those holding in the everyday context of the kitchen sink flow. 

The interpretation of a hydraulic jump as the result of a viscous-inviscid 
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FIGURE 1.  The experimental results of Craik et u2. (1981) for hydraulic jumps. 

interaction is not a new idea. Gajjar & Smith (1983) consider the surface-tension-free 
flow of a liquid layer with a uniform velocity profile, allied to a viscous sublayer a t  
the wall to ensure that the no-slip condition is met. They show that for an order-one 
Froude number in the limit of large Reynolds number (Re), branching or free 
interaction can take place on a lengthscale L,  where 1 < L 4 Re if the Froude number 
is greater than one. The normalized governing equations are shown to be identical 
with those which govern the hypersonic free interaction, with the displacement of the 
viscous sublayer ( - A )  and the pressure (P) driving that layer being proportional, or 
in scaled terms P = - A .  In the context of liquid-layer flow the displacement, - A ,  
is identified with the change in height of the free surface and so the driving pressure 
gradient is just that provided by the effects of gravity. The lengthscale of these 
interactions is sufficiently long that streamline curvature effects are relatively small 
and sufficiently short that viscous effects are confined to a sublayer a t  the wall. 
Having established that the uniform flow is not a unique solution to the governing 
equations over these scales Gajjar & Smith go on to examine the far-downstream 
asymptote of the interaction and show that free-surface height increases like P I P  
(PI = 0.94796), where z is the scaled streamwise distance and m = g(47 -2) NN 
0.43050. Thus the free surface there has a blunt shape, approximately parabolic and 
qualitatively not unlike the real hydraulic jump. 

Brotherton-Ratcliffe & Smith (1986) make a comparison of the theory of Gajjar & 
Smith with the experiments of Craik et al. They presume that the flow properties 
upstream of the jump are essentially inviscid, but with a Blasius sublayer at the wall. 
This is used to give predictions for the depth and skin friction of the flow at the radius 
of the jump. It implies that the depth varies inversely as the radius, due to mass 
continuity effects, and that the skin friction varies as the inverse square root of the 
radius, due to the growing boundary layer. Overall, however, the prediction for the 
height of the jump is too small. The comparison is most accurate in the case where 
the incident depth used in the prediction is not that calculated as above but that 
measured from figure 6 of Craik et al., reproduced here as figure 1. In  fact the inviscid 
theory predicts the upstream depth to be approximately a fifth of its actual value. 
On the other hand, there are many encouraging features of qualitative agreement 
between the behaviour and structure of the experimental jumps and the predictions 
of the high-Reynolds-number interactive theory. For example, in the experiments 
the main body of the layer does not slow suddenly, but instead seems to ride over a 
separated region below it,  of length large compared with the depth of the layer. This 
is in contrast to the assumptions of traditional inviscid models of the hydraulic jump 
(Rayleigh 1914; Lamb 1932; Watson 1964; Lighthill 1978) which model the jump as 
a discontinuity in the flow field. The theoretical prediction here is that the flow 
should react in two regions with separation possible in the viscous sublayer but the 
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main part of the flow merely being displaced. In addition, in the experiments, as the 
position of the jump moves (quasi-steadily according to the present theory) towards 
the source of the water the length of the separated region decreases. This can be 
explained as being due to an increase in the skin friction or the Froude number in the 
thinner, faster-moving layer nearer the source, implying, from the scalings involved 
(which are presented below), a decrease in the lengthscale of the interaction. 

Despite the relative success of the above theory and comparison, we believe that 
significant additional effects should be included in the theory. An examination of 
figure 1 suggests two main effects which are not considered above. The first of these 
is the effect of viscosity in the incident profile upstream of the jump. It is this that 
is responsible for the substantial increase in thickness of the incident layer ahead of 
the free interaction rather than the decrease predicted by inviscid theory. Watson’s 
(1964) solution, which takes account of viscous effects in the upstream profile, 
predicts a quadratic increase in the depth of the layer, as viscous retardation more 
than compensates for the effects of radial spreading. The second main effect is that 
of surface tension - in the experiments and in the filling of a kitchen sink one or more 
small standing waves can be seen upstream of the predominant jump. Although it is 
tempting to interpret these as capillary waves, the present theory shows that, rather, 
they are inherent features of the overall viscous-inviscid interaction described below. 
There is also a third effect which we include in the theory below, that of the cross- 
stream pressure gradient due to streamline curvature. This is included since it acts 
to reduce the effect of the surface tension, giving rise to a term in the pressure- 
displacement law of the same type as does surface tension but of a different sign. 
Although the emphasis of this work is on the study of the steady hydraulic jump, 
many of the experiments of Craik et al. and others indicate unsteady jumps, 
exhibiting waves, instability and transition to turbulent flow. The theory presented 
here can be extended to unsteady flow, and indeed the unsteady version of the 
governing equations seems to merit further study, for example in view of the 
nonlinear breakup within finite time predicted by Smith (1988). 

We therefore develop a theory of the hydraulic jump along these lines, on the 
assumption that the Reynolds number of the flow is large but also that the Froude 
number is large, sufficiently large, in fact, that Watson’s solution is an adequate 
description of the layer upstream of the jump. This assumption also ensures that the 
branching solutions initially arise on an essentially parallel basic flow. We consider 
first the flow of a two-dimensional layer (in $2) and derive the equations governing 
the interaction on a long O(Re) scale over which curvature effects are small. In the 
limit of large Froude number, however, the scale of the interaction decreases and 
when the Froude number is O(Ref) the curvature effects cannot be neglected and new 
equations incorporating them are derived. We then consider (in $3) the solution of 
a linearized form of these equations corresponding to the flow of the layer over an 
obstacle of small height relative to the depth of the inner layer. This illustrates the 
change in nature of the upstream solution from smooth to wave-like as the effects of 
surface tension become increasingly important. Following that, we describe 
numerical solutions to the nonlinear free interaction and analytical properties in $4. 
Finally we incorporate these results into a theory of the axisymmetric jump 
encountered in the experiments, and compare the two in $5, followed by further 
discussion in $6. The comparison is found to yield fairly good agreement in 
quantitative terms. This comparison appears to give the simplest experimental 
verification (so far at least) of viscous-inviscid interaction theory, in the sense that 
the hydraulic jump is an everyday occurrence. 
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2. The equations governing a two-dimensional jump 
2.1. Long scales 

The physical set-up of the problem is illustrated in figure 2. We consider two- 
dimensional motions. Let X * = 0 be the station at  which we are considering the flow, 
and let the depth and velocity profile here be h* and U*(y*/h*) respectively. Here 
y* is the vertical coordinate. The volume flux per unit width, Q*, carried in the layer, 
is independent of X*, and if the kinematic viscosity of the fluid is v we can define 
a Reynolds number for the flow as Q*/u. A typical velocity at  the particular 
X*-station is 8* = Q*/h* and a representative pressure is pgh*, where p is the 
fluid density. We take h* as a typical lengthscale. If we non-dimensionalize the 
NavierStokes equations with respect to these values we find 

O17z+vDy =-sP,+Re-’(U +Dz,), ( 2 . 1 ~ )  

DVg + VPu = -spy - s +Re-l(Vyu + V*,), ( 2 . l b )  

O = V = O  at y = o ,  ( 2 . l d )  

U(y)dy = 1 .  ( 2 . l e )  

Here y = 1 +r(& = h ( 2 )  is the unknown position of the free surface. We define s to 
be the inverse Froude number of the problem, s = Fr-l = ~ h * ~ / & * ~ ,  where g is the 
acceleration due to gravity. If we neglect the stresses in the air above the layer and 
assume its density to be zero we can take the pressure at the free surface to be zero. 
The conditions at the free surface, including the effects of surface tension, are then 

(D2 - Vy) 71 ++( Oy + VZ) ( 1  -7%) = 0 ,  ( 2 . 2 ~ )  

tY 

i&+ Vu = 0 ,  ( 2 . 1 4  

l + r d )  - J0 

- 
Ur]Z = v. (2.2c) 

Here T is the coefficient of surface tension of the fluidlair interface. We now assume 
that the lengthscale of the adjustment of the layer is long compared with its depth 
and make the boundary-layer approximation. More specifically we scale if with 
Re (2 = d i e )  and P with Re-l (v = Re-l V) and let Re --f 00. Surface tension effects will 
be important over these scales if Ts/pgh*2Re2 is O( 1 )  as Re + co. For the moment we 
will presume that this is not the case. If we now write 

SP = -s(y-1)+p, (2.3) 

and neglect surface tension, we are led to the system 

DO,+ vuy = -p,+ Oyy, 
ox+ vy = 0, 

s,”” O( y) dy = 1 ,  

U = V = O  at y = O ,  
Dy=O at y =  l + y ,  

D= U0(y), 7 = O  as x--f--co. 
p y  = 0, P = S T ,  

( 2 . 4 ~ )  

(2 .4b)  

( 2 . 4 ~ )  

(2 .4d)  

(2 .4e)  

(2 .4h)  
(2.4f9 9) 
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y = 1 + 7 = h  

FIQURE 2. Diagrammatical sketches of the hydraulic jump problem as described near the start 
of 92.1 : (a) the problem in dimensional terms, ( b )  the problem associated with equation (2.4). 

Equations (2.4) are the equations governing the development of the liquid layer 
over a long O(Re) lengthscale. They are interactive in that the pressure driving the 
layer is not prescribed but is determined by the interaction of the viscous forces 
throughout its depth and the unknown position of the free surface. If we suppress the 
interaction by setting s identically equal to zero we obtain equations corresponding 
to those studied by Watson. 

2.2.  Large Froude numbers and shorter scales 
The case of finite s has been studied by Bowles (1990). The interaction is then 
strongly influenced by effects associated with the non-parallelism of the basic flow. 
However at large Froude numbers, i.e. small s, the lengthscale of the interaction is 
found below to shorten to O(Res3) and the governing equations, at  first, become 
essentially those studied by Gajjar & Smith (1983). 

To show this we seek a perturbation to the oncoming flow of the following form, 
with 0 = 3,: 

%J - @O+S$l, 17 - qo+sq,, P - SP0+S2P1, (2.5a-c) 

where %Jo,qo,po represent the oncoming flow and are functions of x satisfying 
(2.4a-h), see figure 3. Without loss of generality we can let qo be zero so that the 
depth of the layer is initially unity. In addition, therefore, p ,  = 7, = 0. The 
perturbation quantities, @,, y l , p ,  are functions of the fast variable 2 = x/ss  and 
p ,  = ql. In  the main part of the flow where y - O(1) (region I in figure 3) the rapid 
growth of the perturbation dominates and the solution is governed by inertial effects, 
with the pressure term reduced in importance by the smallness of s. Therefore 
( 2 . 4 ~ - h )  reduce here to 

(2.6) 
- -  

3; $L? - +L-o" @,p = 0, 
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- O(s8) - 
FIQURE 3. The structure of the free interaction for large Froude number (8-l). 

where a prime indicates differentiation with respect to y. This result neglects cross- 
stream pressure gradients (arising from the term in (2.1 b)) with a relative error 
of O(s-'Re-'). It has solution $l = A,($) 3;. Application of the boundary conditions 
at the free surface which, neglecting surface tension effects, reduce to G1(l) = 
-q($;(l) and $i(l) = - ~ ~ $ ~ ( l ) ,  yields 

(2.7) A 1 =--r] 1 -  - - p  1' 

$ - +hy2 + sAl hy,  

As y+O we obtain, if 3, N ihy2, 

(2.8) 

so a sublayer (region I1 in figure 3)  of thickness y N O(s) is produced at  the wall to 
reduce the resultin4 slip velocity, sAl A, to zero. Here we write y = s& and $ = s2$(zA), 
0 - so(&), where U = $2, and so we obtain a nonlinear inertia-viscosity-pressure 
balance in this sublayer, - 

UU,-$,U2 = -p,,+U;z, ( 2 . 9 ~ )  

O= $;, (2.9b) 

( 2 . 9 ~ )  

0 N A(z^+Al), &-+ 03, (2.9d) 

0 - A S ,  $+-a, (2.9e) 

- -  I - 

O(0) = $ ( O )  = 0, 

and, from ( 2 . 7 ) ,  Pl  = -4 (2.9f 1 
The above result is true for small s. These equations are, in fact, identical to those 
derived by Gajjar & Smith and predict, as described in the introduction, a blunt 
jump profile. 

The above analysis shows that the interaction can also take place in layers with a 
general velocity profile provided that the Froude number is sufficiently large. So the 
application here is a broad one. 

2.3. Surface tension and curvature 
The lengthscale of the interaction has shortened from O(Re) to O(sSRe) and this 
means that the neglected curvature effects are no longer small. They appear to first 
order if s = Re% and Ts/pgh*a = T, say, where B and T are O( 1) as Re + co. If this 
is the case then T/pgh*2 = T/me?. The lengthscale of the interaction is then O(Re)), 
which is the scale associated with upstream influence in boundary-layer jets, see 
Smith & Duck (1977), or channel flow, see Smith (1976a, b), when it is streamline 
curvature which is the dominant inviscid effect. If we repeat the above argument on 
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this lengthscale and with the above definitions of T and S we find the following 
additional equations holding in region I : 

plly-l = TF7A1i3 -Al, ply = F7A1ij  $h2, (2.10a, b) 

so that, (2.10c) 

instead of (2.9f ). We can normalize this set of equations further by factoring out A, 
the value of $g(O) .  Thus we find 

Here, 

uu,+vuy = -Px+Uy,,  

u,+vy = 0, 
U = V = O  at Y = O ,  

U+Y+A as Y+m,  

A+O as X+-m, 
P = -A+yA,X. 

the lengthscale over which the interaction occurs is 

L* = h*sSRe/A5, 

(2.1 1 a) 

(2.11b) 

(2.114 

(2.11d) 

(2.11e) 

(2.11f 1 

(2.12a, b) 

(2.12 c) 

and the position of the free surface alters by an amount 

ah* = h*(s/A2) (-A). (2.12 d) 

Surface-tension effects dominate those of streamline curvature if y is positive. This 
is the case in the experiments. We note here that the downstream asymptote for the 
case studied by Gajjar & Smith (1983) (y  = 0) is still valid for the case y =+ 0, 
sufficiently far downstream, and capillary influence is effective over a relatively short 
lengthscale : see below. Therefore (2.11) is found to predict a jump whose downstream 
form is dominated by the gravitational term ( - A ) ,  but whose upstream form is 
greatly affected by the surface tension term ( y A x x ) ,  as shown in the following two 
sections. 

3. Linear solutions 

over a small obstacle, y* = Ah*Re-bA-2F with A Q 1. We write 
As a first step in understanding the solutions of (2.11), we will solve them for a flow 

(U-Y,V,P,A) = 4u,v,p,a), (3.1) 

with u, v, p, a O( 1) as A + 0. After a Prandtl transformation the governing equations 
are 

Yu,+v = -p,+uyy, ( 3 . 2 ~ )  

u,+vy = 0, (3 .2b)  

u-a+F as Y+m,  ( 3 . 2 ~ )  
u = v = O  at Y = O ,  (3.2d) 

p = -a+ ya,,. (3.2e) 
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FIGURE 4. Solutions for linearized flow over an obstacle. Changes in free-surface position (-) and 
skin friction (--) for flow over the obstacle ( 3 . 5 ~ )  for y = - 100, -3 ,  -0.1, 0, 0.1, 3, 100, 1 = 10, 
3, 1, 1, 1 ,  3, 10 for cases (a*) respectively. 
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We solve these by means of Fourier transforms in X where the transform 6 of g is 

g = -  (3.3) 

define$ by 

and find (3.44 

(3.4b) 
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where B = 1/31Aihl, (3.44 

-in < arg (ik): < in, (3.44 

and Ai, is the value of Airy’s function evaluated at  zero. The value of u is 
approximately 1.288. 

We will consider the exponential hump, 

(3 .5a,  b )  

These expressions are inverted using a fast Fourier transform routine and the 
results are shown in figure 4. It can be seen that for positive y ,  which corresponds to 
surface tension effects dominating those of streamline curvature, the upstream 
behaviour is wave-like due to  upstream capillary waves. The waves are not present 
for smaller values of y. If y is positive there are waves just downstream of the 
obstacle and none upstream. Another feature of note is the increase in the scale of the 
upstream influence as IyI increases. In interpreting these results it is helpful to have 
some knowledge of the poles and branch cuts associated with the integrand. 

We begin by discussing the behaviour downstream of the obstacle, determined by 
the features in the upper half of the complex k-plane. There is a branch cut running 
from the origin to +im and this, viscous, phenomenon is responsible for the 
algebraic decay (like X-4) at downstream infinity. For non-negative y there are no 
poles in this half-plane and the above decay is the only feature. However, if y is 
negative and the effects of streamline curvature dominate those of surface tension 
there are poles and wavelike behaviour is seen. As IyI increases from zero these poles 
migrate from 

to 

(3.6) 

(3 .7)  

If IyI is small there is an interaction between the gravitational term in (2.11f) ( - A )  
and the curvature term ( A x x ) .  This gives rise to short gravity waves. The interaction 
of these waves with the boundary layer near the wall is less important but, 
nevertheless, still gives rise to a rapid decay of the waves downstream. As curvature 
begins to dominate over gravity these waves become more of a viscous-inviscid 
interaction and become long and more rapidly decaying, relative to their length. 

Upstream the solution is influenced by the lower half-plane. If y is identically zero 
there is a pole at  k = - iu-3 and this gives rise to the smooth exponential upstream 
influence seen in the results. For small y another root appears on the negative 
imaginary axis, which, like that for small negative y, has its origin in an inviscid 
interaction between capillary effects and gravity. This pole is a t  

It corresponds to a short-scale upstream effect and is not seen in the calculations (see 
the discussions in $4). As y increases these two eigensolutions approach one another 
and merge to give rise to oscillatory upstream influence if y > 0.257. These waves are 
caused by gravitational, capillary and viscous effects and are initially long compared 



The standing hydraulic jump 155 

with the upstream-influence lengthscale. As y increases further, upstream waves 
become more obvious. Finally for large y there are long waves governed primarily by 
surface tension and viscosity and associated with poles at 

?z = 0, -1 .  (3.9) 

So, for linearized disturbances at least, the inclusion of capillary effects in the 
theory of Smith & Gajjar has the effect of allowing the upstream influence to be 
wave-like. This feature of the interaction is seen in the experiments of Craik et al. The 
next section gives the results of integrating the fully nonlinear equations for the 
problem of a free interaction. 

4. The free interaction : computational solutions and analysis 
The previous section describes linearized solutions and predicted the upstream 

response of the supercritical liquid layer to a small obstacle. As the size of the 
obstacle is increased we expect the extent of the upstream influence to increase and 
eventually separation to occur ahead of the obstacle. As the obstacle size is increased 
further we would see the separation occurring far ahead of the obstacle as a result of 
a free interaction. In  the present context we interpret this as a hydraulic jump 
upstream of the obstacle. It must be emphasized that the downstream conditions 
retain an influence on the position of this free interaction, see Smith (1982). 

Computational solutions of the free interaction (2.11) were obtained, for various 
y-values, by a finite-difference scheme of the box type, which is now fairly standard 
and so does not require a detailed description here. The scheme is nominally second- 
order accurate. The interaction is started with a small positive or negative pressure 
kick, upstream, leading downstream to a nonlinear response which is tracked by 
forward-marching in X and using Newton iteration at  each X-station. Typically the 
values taken for the grid sizes d X , d Y ,  in X, Y respectively, were 0.05-0.2, the 
iterative tolerance was lo-', and the outer-edge value of Y was Y, = 5-20 ; grid-effect 
studies suggest that these values are satisfactory for graphical accuracy at least. A t  
Y = Y, the two constraints (cf. (2.114) 

U = Y , + A ,  7'1, (4.1 a, b) 

are imposed, where 7 = U,, to avoid exponential growth in Y in effect, and (4.1) is 
coupled with the interaction law (2.11j), written in the form 

B = A x ,  P = - A + y B x ,  (4.2a, b )  

for convenience. Here (4.2) is discretized using two-point formulae centred midway 
between the current X-station and the previous one. When reversed flow is 
encountered, beyond the regular separation point a t  which T~ = T ( X ,  0) vanishes, the 
FLARE technique is employed, i.e. the term UUx is neglected wherever U < 0, as an 
extra approximation to help stabilize the forward march. See also the comments in 
Gajjar & Smith and later in this section. 

The free-interaction results obtained are summarized in figures 5 and 6, covering 
a range of values of y 2 0. For zero y there are basically two options for the free 
interaction, corresponding to a positive or a negative upstream pressure kick. The 
former gives the solution of Gajjar Q Smith (1983), leading to separation downstream, 
whereas a negative kick yields the Brown, Stewartson & Williams (1975) solution 

6 FLM 242 
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- A  

J , , , , , , ,  I . .  . .  
. .. . . .  I 

20 40 60 ' 8 6 '  100 
X 

FIQURE 5.  The nonlinear free-interaction results with the law P = - A +  yAxx,  for various values 
of y 3 0, showing (a) --A, ( b )  P ,  (c) T,, versus X .  The pressure kicks used for the curves (left to right) 
in order were 0.0001, 0.001, -0.001, 0.001, -0.OOO1, -0.001. The results marked show the 
influence of increasing Y, to 10. The curve for y = 0 has an origin shift of 50 in X .  
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FIUIJRE 6. The nonlinear free-interaction results for the law = xprshowing (a) -x, (b) P ,  (c) TW, 
versus 8, obtained from pressure kicks 0.001, -0.001, O.OOO1, upstream (I, 11, 111, respeztivelfl. 
Here the res_ults denoted , A, V , indicate the typical effects of halving or doubling A P or A X  ; 
otherwise (~m,dy,Ax) = (40,0.2,0.05). 
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FIGURE 7. Typical results for the nonlinear free-interaction with the law P = -A+yA,,  but 
negative y ,  showing -A ,  P,  T,, versus X .  Here y = -5, (Y , ,dY,dX)  = (40,0.2,0.05), with 
showing the effects of doubling Y,; the upstream pressure kicks are (a) -0.OOO1, (b )  O.OOO1. 

which terminates in a strong attaching-flow singularity a t  a finite X-station. In 
contrast, for positive y there is in broad terms only one kind of non-trivial free 
interaction, that leading to separation downstream, for any sign of the pressure kick 
upstream. This ‘uniqueness ’ is supported, first, by the computational results in 
figures 5 and 6 for pressure kicks of different signs, where downstream separation is 
always found. In fact, one could argue that, because of the wave-like exponential 
form upstream, infinitely many nonlinear free interactions can be provoked by 
varying the kick, subject to a periodicity property, and some examples are shown in 
the figures. All the resulting interactions are believed to end up with separation 
downstream, however. The ‘ uniqueness ’ is supported, second, analytically, by the 
property that a finite-distance singularity (at X = X, say) associated with strong 
attachment requires both A and -P to become large and positive, essentially 
because of a dominant inviscid Bernoulli balance (P = -g2) and induced slip 
velocity ( % A )  which must be positive for consistency as X+X,-; but the 
interaction law (2.11j) is then dominated by P z yAxx locally near X = X,- , a 
form which clearly requires A and P to have the same sign (in a singularity) and thus 
contradicts the above. So a finite-distance singularity seems to be ruled out. If y were 
negative, by the way, such a singularity would be attainable, of the form in Smith 
(1977) with P K (X-XJ4 and A cc (X-X,)-2; see $6 and figure 7. 

It follows that, although the contribution ?Axx in (2.11f) with y positive still 
allows upstream influence to be present (and in a wave-like exponential form, as in 
the linear upstream solutions in $3),  the subsequent nonlinear behaviour downstream 
is distinct from that found in all previous free-interaction studies, as far as we know. 
The initially small wave-like disturbances upstream develop to produce nonlinear 
spatial oscillations, as shown in A ,  P, 7, in the figures. These oscillations increase in 
magnitude downstream, as, typically, a rising pressure (adverse gradient) forces the 
skin friction 7, to decrease and the scaled displacement effect ( - A )  to increase, 
forcing the curvature - A x x  up and hence the surface-tension pressure yAxx down, 
which can eventually overwhelm the gravity pressure and so tends to lead on next 
to a favourable pressure gradient followed by increasing 7, and decreasing - A ,  
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hence eventually raising the surface-tension pressure, and so on as the downstream 
distance increases. A final nonlinear oscillation causes the flow to separate (7, 

becomes negative), under an adverse pressure gradient, in the cases in figure 6. After 
that, the numerical evidence rather tends to suggest that the flow solution stays 
separated and acquires a breakaway-separation structure far downstream, as 
described below. We should remark here however that, on the one hand, the 
computational scheme usually failed not far beyond the separation point, as is quite 
often the case for forward-marching calculations for reversed motions (multi- 
sweeping with windward-differencing would be better, in principle), and on the other 
hand it is not unlikely that more nonlinear oscillations could occur for some cases, 
yielding one or even more reattachments downstream: see the third paragraph 
below. Again, all the results at  stations beyond the separation point should be viewed 
with caution because of the reversed direction of influence here, as discussed further 
subsequently. 

The physically acceptable far-downstream response of all the free interactions with 
y 2 0 appears to be controlled at  leading order by the - A  term, as opposed to the 
yAxx one, in the interaction law (2.11f), simply because X is large and positive. 
Hence the asymptotes have the form 

P- P I P +  ..., - A  - P I X m + . . . ,  (4.3a, b )  

from Gajjar 6 Smith; see the values of Pl,m in $1. Only higher-order terms are 
affected by the yAxx  contribution. Thus the downstream asymptote is dominated by 
the gravity-induced pressure, with the surface-tension effect playing a secondary role 
there. There is an alternative downstream response which is of possible physical 
interest, namely that 

at  large positive X .  Here the balance between gravity and surface-tension effects in 
(2.1 if) persists downstream, forcing, for positive y exponential breakaway as in 
(4.34, and the separated flow structure produced is essentially the same as in Smith 
(1978). It so happens that the present computational results appear to tie in with 
(4.3c, d )  rather than (4.3a, b), as X increases beyond separation, and indeed the 
quantitative agreement is found to be very close. We should recall that the 
interaction problem is really an elliptic one, with or without separation present, and 
so the far-downstream conditions can affect the whole interaction and in particular 
suppress exponential downstream growth ; this is shown analytically by Bowles 
(1990) for some related nonlinear interactive flows without separation. With 
separation occurring, in the present context, the entire flow solution beyond the 
separation point depends directly on the reversed-flow properties downstream, 
including especially the vorticity distribution there (see also the next paragraph 
concerning the reversed velocity profiles). The forward-marching computational 
solutions described above can take no account of this direct mechanism of upstream 
influence beyond separation and so, as with all other treatments of free-interaction 
separations, the computational solutions must be regarded with considerable 
caution, and in strict terms are invalid, beyond separation. The favoured case, in 
view of these points is that of (4.3a, b) although the exponential increase (4.3c, d )  
may be of relevance for certain downstream conditions (cf. a near-stationary solitary 
wave of the type described by Benjamin 1962). 

The same conclusion holds true even when y is large (an extreme which is of much 
interest with regard to the experimental comparisons in the next section). Then the 

P - constant, - A  - exp (y-iX), (4.3c, a) 
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free interaction splits into two parts, in essence. The first part, upstream, has the 
gravity effect - A  negligible compared with the surface-tension effect yAxx,  so that 
with the scaling transformation 

(U ,  V ,  P ,  A , X ,  Y )  = (y+O, y-+F, y$P, y+X) $3, y+F), (4.4) 

applied the governing equations remain as in (2.11), with double overbars added, 
except that the interaction law becomes 

- -  - -  
(4.5) P = A = =  

X X ‘  

The correction term due to gravity is of the order y-i. The appearance of the 3 powers 
in (4.4) is consistent with that of the f powers of the Reynolds number in the original 
scalings used in $2,  and in particular the largeness of y tends to prolong the free 
interaction (as is evident from figure 5 ) ,  in contrast to the influence of the large 
Froude number described in $2. The solutions for the case (4.5) are presented in figure 
6. The previous comments in this section, regarding the wave-like upstream 
influence, the ‘uniqueness ’ of the downstream response as the upstream pressure 
kick is varied and the dynamics of the nonlinear oscillations, apply here also, by and 
large, the exception being the downstream asymptote for the breakaway separating 
motion, Here, at large positive x, a pressure plateau is approached with 

P+Pm, -2 - t( -Fm)82, (4.6a, b )  

giving the scaled pressure and displacement properties. This response is analogous 
with the result of Smith & Duck (1977) for jet-flow interactions (in which P = 
-I**), except that in the present case Fm must be negative and is non-unique; 
see figure 6. The separated-flow structures associated with (4.3a, b) ,  (4.6) are similar 
to some extent, each having an O(Xi)  (or O ( x t ) )  detached shear layer above a 
reversed-flow sub-boundary-layer at  the surface, although the reversed velocity 
profiles in the inviscid region are non-uniform and uniform respectively, and 
algebraic growth of the solution in the sub-boundary-layer is present in (4.3a, b )  but 
not for (4.6). Again with regard to the current case (4.6), there is a certain novelty 
to note here, in the sense that downstream breakaway separation is produced by an 
overall fall in the pressure ! 

Another interesting novel feature seen in figure 6 is that, depending on the initial 
pressure kick, free interactions can encounter a reversed flow region of finite extent, 
prior to the ultimate breakaway separation that leads to (4.6). This short-bubble 
phenomenon, involving separation, then reattachment, and then separation again, is 
mentioned further in $6. The first separation leaves the pressure P becoming positive 
(cf. (4.6a)), so that the displacement then curves downwards eventually (from (4.5)), 
causing the subsequent reattachment, after which the second separation leaves P 
negative, in readiness for the ultimate behaviour of ( 4 . 6 ~ )  further downstream. A 
similar short-bubble phenomenon could occur for y of 0(1) also, as mentioned 
previously. 

- -  - 

The second part of the large-y interaction arises further downstream, where 

x - y:, (4.7) 

and the effects of the gravity term return to leading order. This is due to the 
downstream growth of the gravity-induced pressure, like distance squared from 
(4.6b), compared with the plateau in the surface-tension pressure (4.6a), and it can 
be inferred directly from (2.11f) also. The crossover, from the first asymptote (4.6) 
to that of (4.3a, b)  further downstream, occurs within the scale of (4.7) and is similar 
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to that described by Smith (1985). The crossover is effectively one from surface- 
tension-dominated interaction to gravity-dominated interaction. A similar division 
of the free interaction into an upstream region where surface tension dominates and 
a second, downstream, region where gravity is the dominant effect, occurs in the case 
studied by Bowles (1990), of low-Froude-number liquid-layer flow down a shallow 
incline under the influence of relatively strong surface- tension effects. 

Concerning comparisons between the free-interaction computations for increasing 
y in figure 5 and those for the large-y limit in figure 6 ,  the approach to the limit seems 
to be relatively slow, probably because of the O(y-+) correction, mentioned just after 
(4 .5) .  Nevertheless the comparisons tend to be affirmative overall in qualitative 
terms. A broadly similar comment applies to the comparisons with the asymptotes 
(4.3a, 6 )  and (4.6a, b)  (granted the reservations expressed earlier concerning the 
results in the reversed-flow regions), although the latter appears to be emerging fairly 
clearly in the results of figure 7 which illustrates the case of negative y ,  in which the 
asymptotes (4.3c, d )  are not attainable. 

The above theory, therefore, seems to capture much of the structure seen in the 
experiments of Craik et al. the wave-like upstream influence caused by capillary 
effects, and the eventual large jump itself where the gravity-induced pressure is 
dominant. We now move on to compare quantitatively the theory with the 
experimental results. 

5. Comparisons with experiments 
5.1. The flow upstream of the hydraulic jump 

Our suggestion is that the circular hydraulic jumps described in the introduction 
are free, viscous-inviscid interactions, of the type described in $4 forced by an 
unspecified downstream condition and following an incident fully developed flow. 

We believe for two reasons that the flow is fully developed at  the position of the 
jump. First, the Froude numbers of the layers in the experiments are large, typically 
between 20 and 50. The development is therefore likely to be governed by Watson’s 
solution which assumes an infinite Froude number and predicts, in this axisymmetric 
case, a quadratic growth in the depth of the layer. This growth agrees qualitatively 
with that seen in figure 1 .  The depth just upstream of the jump position, predicted 
with this assumption, is much closer to the measured values than those predicted by 
inviscid theory. Watson’s theory is, however, only asymptotically correct far 
downstream and so the origin of the expansion is unknown. Watson makes an 
approximation to the unknown constant in the solution using the KhmBn- 
Pohlhausen method. We prefer to integrate the equations numerically. The results 
provide the second reason, namely that the flow predicted by the numerical solution 
is indeed fully developed and given by Watson’s solution at  the jump position. The 
equations governing the large-Froude-number axisymmetric flow are 

(z*U*),*+(z*V*),* = 0, 

u*uj* + v* u;* = v u;.,., 

2 m *  I* U* dy* = Q ,  

u*=v*=o at y* = 0, 

U;. = 0 at y* = h*. 

( 5 . 1 ~ )  

(5.1 b )  

( 5 . 1 ~ )  

( 5 . l d )  

(5.1 e )  
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FIUURE 8. The numerical solution of the axisymmetric boundary-layer equations, 
(5.3) illustrating H and 3 1 / 3 H l x - P  which asymptotes to 2.33 as f+co. 

Here x* = 0 corresponds to the point at  which the jet hits the plate and Q is the 
flux falling onto the plate. We presume that a t  this point the flow is inviscid and so 
we find h* = a2/2x*, where c is the radius of the jet as it strikes the plate and that 
a boundary layer grows from the wall to fill the layer downstream. We non- 
dimensionalize these equations, and introduce a stream function and modified 
vertical coordinate as follows : 

(5.2a, b) 

(5.2c-e) 

This leads to the equations "I " I 

uu, - +? ui = m g z ,  (5 .3a)  
o= &, (5.3b) 

O(0) = &(O) = 0, Oz(H) = 0, &(H) = 1 ,  (5.3c) 

ZE [0, HI, H unknown, ( 5 . 3 4  

H = l  at $ T O .  (5.3e) 

These equations do not exhibit branching/free interaction since the interaction is 
suppressed by the neglect of the pressure term, ( S H / X ' ) ~ ,  due to the small value of s. 
Note that as H increases the interaction is reinstated. 

The similarity solution to these equations, for large values of 2, when viscous 
effects are assumed to be spread across the layer, is such that (see Watson 1964) 

$ = f ( E ) ,  E = Z / H ,  H = 4(xq++d3), 
f"' + 3af'Z = 0, 

f(0) =f ' (O) =f"(l)  = 0, f(1) = 1 ,  

( 5 . 4 4  

(5.4b) 

(5.4c) 
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Q U x,* hf 
1 1  0.15 2.55 0.034 
18 0.17 2.95 0.026 
29 0.22 4.15 0.028 

TABLE 1. The measurements of the experimental hydraulic jumps of Craik et al. (1981) : the flux 
Q ,  the jet radius, u, the jump position, xf, and the depth just upstream of the jump, hJ' 

where the value of d3 is to be found numerically by solving the initial value problem 
(5.3) and the prime represents a/a& Then 

where c x 1.402. (5.4g) 
We integrate (5.3) forward in 2 from an initial condition using a suitable 

adjustment of a Crank-Nicholson scheme. This initial condition consists of a uniform 
velocity for z' > 0 and a velocity of zero for z' = 0. The flow becomes fully developed 
with H - (n/3 2/3) (P+d3) ,  as predicted by Watson's theory for 5 % 1. The value of 
d3 is estimated to be 2.33, using 101 points in the vertical direction and an f s tep  of 
0.001. This value is used later. It agrees well with Watson's approximate method 
which gives d3 = 2.29, see figure 8. 

We use the above theory and computations to give a value of, among other 
variables, h:, the depth at the jump position, Re and s at the jump and L5, the 
nominal lengthscale of the jump given by (2 .12~)  given xf,  Q*, and u. Values for 
these are read from figure 1 or, in the case of r, estimated from the results presented 
in table 1 in Craik et al. The position of the jump is judged to be the crest of 
the obvious wave just upstream of the jump itself. The results are, using v = 0.01, 
g = 981, p = 1.0 and T = 73 in c.g.s. units, 

L ,  = 1.996(Qa2)5, (5 .54  

Q*=m' A = 2.279, l $ i 2 d y  = 0.773, 

xf3 + 18.53Qr2 , Re = 15.91,, Q h: = 0.0380 
QXS XJ 

(5.5b-d) 

(5.5% f) 

x* x * ~  + 18.53&a2) 
7 (5.593 h) 

Q3 
, ,u= 142 J( (xf3 + 1 8 . 5 3 Q ~ ~ ) ~  

s = 2.123 
Q5x? 

Q " X ~ ~  (xf3 + 18.53Qa2)8 
y = 0.0594 21 (p- l) ,  L* = L: = 2.476 h5 (zf3 + 18.53Qu ) Q14xf4 

(5.5i, j) 

The values we take for u, Q, and x3 are presented in table 1 together with a 
measured value for the depth of the layer at the jump. The non-dimensional values 
of the jump radius, x:/L,, in the experiments are in the range 1.25-2.23 and are 
therefore above the value, of about 2 = 1, where these integrations indicate the flow 
has become fully developed. The values predicted for ,u and y are also of interest. For 
the jump with flux Q = 11 it turns out that ,u z 5.76 and y z 4.34 x lo9, whilst for the 
case Q = 29 these values are 2.36 and 9.12 x 10". On these predictions therefore the 
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~~ 

Q xf hf S L ,  Re 

1 1  2.55 0.029 0.049 1.25 68.67 
18 2.95 0.025 0.017 1.61 97.13 
29 4.15 0.031 0.023 2.23 111.2 

TABLE 2. The predictions, using equations (5.5) for the inverse Proude number, s, and the Reynolds 
number of the jump, Re. L ,  is the non-dimensional distance downstream of the jet at which the 
jump occurs 

behaviour of the flow upstream of the jump will be dominated by capillary effects 
and the upstream influence will be wave-like. This is seen in figure 1.  The lengthscale 
of the upstream influence for such large positive values of y is given by (3.9) and is 
of order 6.8 x lo4 Lf and 2.5 x lo5 Lf respectively. This gives upstream-influence 
scales of 8.9h3 = 3.1 mm and 5.6hf = 1.6 mm, which seem in good agreement with 
figure 1.  The values of Ls are 1.3 x h: in these cases. These 
scales are very short, obviously much shorter than the scales seen in the experiments. 
However, this scale is again appropriate to  jumps governed solely by the pressure- 
displacement law P = --A. In  the present jumps the dominant effect upstream is the 
capillary term yAxx in ( 2 . l l f )  because of the large value of y. The jump far 
downstream is caused by the gravitational pressure gradient, but as shown in $4 this 
only dominates a t  a distance X - O(yi)  downstream. I n  unscaled, dimensional terms 
this translates as being a distance of the order of 8.7hf = 3.0 mm and 6.7hS = 1.9 mm 
in the cases Q = 11 and Q = 29 respectively. It is encouraging to find that this length 
is of the order of that  seen in the experimental results. The predictions for the 
Reynolds number, inverse Froude number and layer depth a t  the jump position, as 
well as the non-dimensional radius of the jump are presented in table 2. It can be seen 
that the prediction for the layer depth a t  the jump position is extremely good. 

hf and 3.4 x 

5.2. The prediction for the jump height 
Using this theory to  give the flow upstream of the jump, we may now go ahead and 
use the results of §$3 and 5.1 together with those of Gajjar & Smith (1983) to predict 
the free-surface shape, h*(x) ,  downstream. It can be shown that the profile far 
downstream of the jump position, on the lengthscale Lf has 

where Sx* denotes the distance downstream and Sh* the change in height. This 
assumes that the jump occurs on a lengthscale short compared with its radius, 
allowing us to  neglect its axisymmetric form and approximate it as two-dimensional. 

We can either use the predictions of Watson’s theory, (5.5), to  give values for hf 
given xf or, alternatively, we can measure hf from figure 1. The first approach gives 
the prediction 

Q1.4574xf1.1525 * 0.4305 Sh* 
- = 1.071 1df3 + 18.53Qa2)1.305 (sx ) ’ 
h : 

whilst the second leads to 

(5.7) 
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Sh* Sh*/hf 
Q 

Sx* . . . 0.25 0.5 1 .o 0.25 0.5 1 .o 
11 0.0375 0.0625 0.1 1.103 1.84 2.94 
18 0.0375 0.075 0.119 1.44 2.88 4.56 
29 0.0313 0.0625 0.103 1.12 2.23 3.68 

TABLE 3. The measurements of the jump - the increase in depth Sh* and the relative increase 
Sh*/hf at positions 0.25, 0.5 and 1.0 cm downstream 

Q Sh*/Sm*'" 8h*l.*I,.,o.,, 8h*I,.-o., Sh*ldz'-l.o 
11 0.058 0.031 (81 Yo) 0.041 (66%) 0.055 (55%) 

29 0.062 0.032 (103 Yo) 0.043 (69 Yo) 0.058 (56%) 
18 0.063 0.033 (89%) 0.045 (60%) 0.061 (51 %) 

TABLE 4. A comparison of the measurements of table 2 with the predictions of (5.7) for the absolute 
increase in the depth. The percentage figures give the ratio of the predicted to the measured result 

Q 8h*/hf ax*'" ah*/hflaz*,,.,5 ~h*lhfla,*-o.s ~h*/hfla,*-,.O 
11 1.93 1.06 (99%) 1.43 (80%) 1.93 (68 Yo) 
18 2.40 1.32 (92%) 1.78 (62 YO) 2.40 (52 Yo) 
29 1.90 1.04 (93 Yo) 1.41 (63%) 1.90 (52 %) 

TABLE 5. A comparison of the measurements of table 2 with the predictions of (5.7) for the relative 
increase in the depth. The percentage figures give the ratio of the predicted to the measured result 

We choose to measure ax* and 6h* from the final dip in the jump profile, just 
upstream of the jump proper. This is not from the x*-station we use to non- 
dimensionalize the equations. The predictions above are valid far downstream where 
capillary effects are small, but the change in height from hJ* is 6h* plus a constant due 
to the effects of surface tension. We attempt to model the effects of this constant by 
the above choices for ax* and ah*. However, given the experimentally very large 
values of y and so the large downstream shift in z* before the effects of gravity 
become important and the above predictions can be taken to be valid, this arbitrary 
choice cannot be expected to be accurate (see below). The measurements of 6h* for 
ax* = 0.25, 0.5 and 1.0 cm, taken from figure 1 are presented in table 3. 

The predictions of (5.7) are given in tables 4 and 5 ,  together with the ratio of the 
predicted to the measured result written in percentage terms. These results are also 
presented in graphical format in figure 9. The prediction is most accurate for smaller 
values of ax*, where it is quite good. Similar behaviour is seen in the predictions of 
(5.8) in tables 6 and 7 A second possibility in making the comparison is to compare 
these predicted curves with the shape of the jump as it nears its maximum depth 
on the assumption that the large value of y delays the position of applicability 
of the predictions to this point. Although the positioning of the curves is arbitrary 
the agreement in figure 9 can be excellent. Further downstream we cannot expect 
the prediction to be valid since then the value of --A has become so large that the 
linearization (within the outer region) implicit in deriving (2.10) is no longer valid. 
Viscous effects also grow to be important in Region I of figure 3 as 6x* increases, and 
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FIQURE 9. Comparisons between experiments ( X ,  0, A representing the Q = 11, 18, 29 
experiments of Craik et al.) and the present theory (-, and marked (a), from (5.7)), for the 
free-surface shape, in three different cases. The dotted curves indicate the continuations of (5.7) 
which, however, apply only for a restricted range of distances x*: see the text. The curves marked 
(b) are the result of shifting those marked (a) in z* and depth by an arbitrary amount in order to 
model the effect of surface tension on this downstream prediction - see $4. 

Q sh*ldz*-0.16 Jh*I,*-o., Sh*ldz*-l.O 

11 0.029 (77 YO) 0.039 (62 'YO) 0.053 (52 %) 
18 0.033 (88%) 0.044 (60%) 0.060 (51%) 

TABLE 6. A comparison of the measurements of table 2 with the predictions of (5.8) for the absolute 
increase in the depth. The percentage figures give the ratio of the predicted to the measured result 

29 0.033 (106 Yo) 0.044 (71 Yo) 0.060 (58 Yo) 

Q ~h*/hflaz*-o.2a 8h*/hflaz*-o., ~ h * l h f l ~ z ~ - l , o  
11 0.82 (77%) 1.10 (62%) 149 (52 Yo) 
18 1.27 (88%) 1.72 (60%) 2.31 (51 %) 
29 1.10 (106%) 1.59 (71%) 2.14 (58%) 

TABLE 7. A comparison of the measurements of table 2 with the predictions of (5.8) for the relative 
increase in the depth. The percentage figures give the ratio of the predicted to the measured result 

the axisymmetric nature of the flow, while negligible during the local jump process, 
becomes a significant additional influence downstream. 

6. Concluding comments 
The comparison presented above seems supportive of the present proposal that 

these hydraulic jumps are governed by a free interaction predominantly between 
surface tension and viscosity upstream and then further downstream between the 
gravitational pressure gradient and viscosity. Viscous effects, then, are vital in 
controlling these jumps. Downstream conditions play a role in determining the 
position of the jumps. 

The theory reproduces much of the structure seen in the experiments, as well as the 
general jump profile. For example, the shortening of the lengthscale of the jump, for 
a given flux Q, as the jump nears the source of the axisymmetric liquid layer and the 
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Froude number of the flow is increased is predicted by equation (5.5). The capillary 
effects on the upstream side of the jump are reproduced, the predicted upstream 
scales being of the order of a few multiples of the layer’s depth. Experiments with 
liquids of different surface-tension coefficients would be of interest in testing the 
importance of the value of p (equation (2.12b)) since it is this that determines 
whether or not waves are predicted upstream of the jump. A change from wave-like 
behaviour to smooth upstream influence is to be expected as p becomes less than one 
and the effects of streamline curvature dominate over those of surface tension. This 
change is seen in the results of $3 for flow over a small obstacle and in the 
computations of the free interaction in $4 (see figure 7). In addition we can expect 
there to be a noticeable effect on the scales of the jump and upstream influence as y 
is reduced in magnitude when p x 1. It is helpful that the experiments are relatively 
simple to perform, the hydraulic jumps being a commonly seen phenomenon, 
providing a useful check on the predictions of this particular application of 
interactive-flow theory. Predictions similar to these are made by Bowles (1990) in a 
discussion of the changes of shape of hydraulic jumps to be expected on a slope as 
the slope angle increases. We note in addition that there may well be applications of 
this theory, and in particular its predictions for the relatively sudden swelling of the 
layer thickness, in the areas of ground effects for vertical-take-off vehicles and other 
situations involving hot or cold thin layers or wall jets (Professors P. Blythe, P. G. 
Daniels, J. Scott and Dr K. Winters, private communications 1989-90. Also S. J. 
Parkinson’s unpublished Ph.D. thesis work 1986-88). In general the pressure- 
displacement law for these physical situations is P = fAfA,, and some 
computational results have been obtained for these cases. The parameter regime of 
the experiments corresponds to large values of y and it would be of interest, also, if 
the short eddies discussed in $4 are seen experimentally. Indeed there is a case for 
taking the study of the large-y limit further since increasing y increases the 
lengthscale of the free interaction opposing the effect of the large values of the 
Froude number and so returning the lengthscale towards the O(Re) values (see 92). 

On the downstream side of the jump gravity is important despite the extremely 
large value of y. The distance downstream a t  which the blunt shape emerges is in line 
with the predicted value of a few layer depths. The solutions for the free interactions 
for the case y > 0 suggest that once the boundary layer has finally separated there 
are no further oscillations in depth and the increase becomes monotonic, eventually 
giving rise to a blunt shape as the effects of surface tension become less important. 
The predictions for the lengths over which this occurs, and so the length of the jump, 
can only be taken as approximate due to the very strong dependence of Ls and y on 
xs, see (5.54 and (5.5j). If x? B 18.53&a2 then L3 - xJ*2a and y N xs:J*-64 and this 
makes the predictions very susceptible to errors made in measuring x: from figure 1. 
The predictions (and the position of the curves (b) in figure 9), are also very 
dependent on the accuracy with which Q is measured. Indeed all the results are liable 
to this type of error, for example an error of 5 % in xs leads to an 11 % error in the 
predictions for 6h*/h3 presented in table 5. The predictions are still reasonably 
accurate, however, especially near the start of the jump. 

As a final comment it is worth noting that the high-Reynolds-number theory 
seems to be successful in describing the part of the jump where the flow separates, 
despite the relatively small value of Re in the experiment (approximately 100). A full 
description of the jump requires the study of the flow downstream of this point and 
the subsequent development and reattachment of the flow. This may enable the 
influence of the downstream boundary condition to be determined explicitly. The 
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models of the flow of a separated free shear layer over an eddy developed by 
Peregrine (1974) and Teles da Silva & Peregrine (1975) may be of some relevance here 
for the case y c 0. In the general case, it seems that the fluid moving over the 
separated region can develop, on the long lengthscale of the separation bubble, into 
a sech2-jet profile, free from the effects of contact with the wall and subject to an 
adverse pressure gradient, decreasing in magnitude. On the other hand, in the 
experimental jump the effects of axisymmetry will now be free to thin the layer, 
causing a favourable pressure gradient and reattachment. This is clearly a 
complicated process. 

The comments of the referees are gratefully acknowledged as is the financial 
support of SERC for R.I.B. 
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